Math 103 Formula Sheet

Financial Management

Simple Interest:	$I=P r t$	Future Value for Simple Interest:

Future Value for Compound Interest:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Present Value for

$$
\begin{aligned}
& \text { Compound } \\
& \text { Interest: }
\end{aligned}
$$

$$
P=\frac{A}{\left(1+\frac{r}{n}\right)^{n t}}
$$

Future Value for continuous $\quad A=P e^{r t}$ compounding:

$$
A=P e^{r t}
$$

Annual Yield
$\begin{gathered}\begin{array}{c}\text { (effective simple } \\ \text { interest rate): }\end{array}\end{gathered} \quad Y=\left(1+\frac{r}{n}\right)^{n}-1$ Periodic deposits
for an Annuity (A
Future Value of an Annuity (P is the amount of each deposit):
$A=\frac{P\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\left(\frac{r}{n}\right)}$ is the amount of the annuity)

$$
P=\frac{A\left(\frac{r}{n}\right)}{\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}
$$

Periodic Mortgage
Payments (P is the amount of mortgage):

$$
P M T=\frac{P\left(\frac{r}{n}\right)}{\left[1-\left(1+\frac{r}{n}\right)^{-n t}\right]}
$$

Probability and Counting Rules

Permutation rule
${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
Combination rule: $\quad{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$
$P(\operatorname{not} E)=1-P(E)$
$P(A$ or $B)=P(A)+P(B)$
$P(A$ and $B)=P(A) \cdot P(B)$
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
$P(B \mid A)=\frac{n(B \cap A)}{N(A)}=\frac{\text { number of outcomes common to B and A }}{\text { number of outcomes in } \mathrm{A}}$

Statistics

$$
\begin{array}{cccc}
\begin{array}{c}
\text { Mean for the } \\
\text { individual data: }
\end{array} & \bar{X}=\frac{\sum X}{n} & \begin{array}{c}
\text { Mean for grouped } \\
\text { data: }
\end{array} & \bar{X}=\frac{\sum(f \cdot X)}{n}
\end{array}
$$

$$
\text { Standard Deviation } \quad s=\sqrt{\frac{\sum(\text { data item }- \text { mean })^{2}}{n-1}} \quad \text { Z-score: } \quad z=\frac{\text { data item - mean }}{\text { standard deviation }}
$$

