## Spacial Relativily!



Ting, as vc linou it, travels at 24 hours par day, or 60 minutes par hour, or 60 seconds par minute. However, notion through space is also related to notion in tine. Albert Einstein vas the first person to understand the relationship betucen space and tine. He stated in 1905 that when use nova through space, we also change our rate of proceeding into the future. In other words, ting ital is altered.

Einstein called this concept the spacial theory of relativity.

The special theory describes hov ting is affected by notion in space at a constant velocity, and also hov nags and energy are related.

## Space-Tine

Iranc Mevton and other scientists before Eingtein thought of space as an infinite "place" where everything esiote.

It vas not clear whether the univerge essigte in space or space "esigts" uithin the universe. Is there space outside the universe, or is space only vithin the univerge?

The sanc question can be acked about tinc. Docs the universe esist in tinc, or does tine esist only uithin the universe? No one really thought about this quegtion until Eingtein canc along.

Einstein answered these questions and said that both space and tine only exist in the universe and there is no space or tine outside the universe.

Einstein then said that space and tine are two parts of the sane idea, which he called space-tine.

In order to understand this, we nut stop thinking about noving through ting to moving through spacetine. Everyone in the universe travels through a combination of space and tine.

When you stand still, all of your traveling is through tine.
duran you hove a bit, gone of your travel is through space and tine

- If you could go the speed of light; you would only travel through $\operatorname{spacc}$, not lind! -Light is the Pastcot spas anything can go. nothing can travel Patter in space than light.

Ag Par as light is concerned, there is no tine. Photons of light travel through space only!

Motion through space afPecte notion in tine. Every tinc ue nove through space, uc alter our novenent into the Puture by a fitte, tiny bit.

Ue call this phenonenon tiac dilation. Tinc dilation is the gtreteching of tinc that occurs juct a teeny-tiny bit Por everyday apceds, but significantly at spesds approaching the spesd of light.

## Relative Motion

Uhencver vc talk about notion, vc nut consider the position Pron which the notion is being observed.

Example: You are inside a moving train that is traveling at $180 / \mathrm{h} / \mathrm{h}$ ir. You udall down the isle of the train lin the sane direction) at 5hin/hr. Hov Past are you noving?

- Relative to the train, you are moving 5kin/hr
- Relative to the ground, you are moving 185lin/hr.

Space is a relative quantity, and its value depends on where it is observed and neagured

Esanple. Suppoge you are standing on the cabooge of a train that is not noving. You have a bou and arrou and you can shoot the arrou at 50kin/hr. If you shoot a target, the target will be hit at 50lin/hr lue have an arrou spesd detectior on the target.j.


Train at Reat

Train. Olkn/hr, Arrou Crelative to train]. 50lin/hr Arrou hitg target: 50lin/hr

Nou, if the train uas backing tovards the target at, say 201 in/hr, the arrou hite the target at $20+50=70 \mathrm{lin} / \mathrm{hr}$.


Train. 2Olkn/ior
Arrou Cralative to train]: 50lin/hr
Arrou hite target: 70lin/hr

If the train uas going Porvard auay fron the target at, $\sigma$ ay 30lin/hr, the arrou hits the target at $-30+50=20 \mathrm{kin} / \mathrm{hr}$.


Train: -30kn/hr
Arrou (relative to train): 501kn/ir Arrou hilts target: 20kn/ir

Space of Light is Constant!

What if something weird started happening, and our arrow speed detector started ncasuring the arrow's speed at the sane speed no natter what the speed of the train uar? In other words, the arrow always hit the target at 50lin/hr. You would probably think that something vas wrong with your detector, because you would not aspect it.
A. A. Michelson (Pron the speed of light esperinent) and E.U. Morley did an esperinent where they neagured the speed of light relative to the earth' $s$ notion. They Pound it to be the same no natter which direction the earth wag noving underneath. So, light behaves in this strange manner.

In 1887, Aichelson and Morley Pound that light travels at approsinately 3 is $10^{8} \mathrm{n} / \mathrm{s}_{\text {, }}$ regardlese of the speed of the source or receiver.

The Phygics connunity uas very, very confuged at this Pinding. Thay did the esperinents over and over again, and continued to Pind the sanc regult.
nothing could vary the spesd of light. Phygics loolied lifie it uas on very shaliy ground.

In I905, Albert Eingtcin canc along and reavaluated what speed uas. He realized that becauge

Spesd = digtance / tinc
speed is the anount of space traveled conpared to the tine of travel. Eingtein had to rethink about the concepte of space and tinc, and he concluded that space and tine vere a part of a single entity he called space-tine. Becauge light travels at a constant spced, Einstain uniPied space and tinc.

## Einstain's Poostulates

Poatulate l. All the lows of nature ore the same in all unformly noving fromes of reference.

Einstein said that there is nothing "stationary" in the universe that ue could neasure notion againgt. All notion is relative.

A spaceship can only neasure itg spesd relative to other objecte, not to enpty space.

If two objects drift past each other at constant speeds, neither spaceship will be able to tell which one is at rest, if one is at rest.

Earthbound csanaple I. if you are on a train at a stop and you look out the window, sonctincs it looks Hike the train nest to you is noving bacliwards, but you are actually moving forwards.

If you cant look out the windows of your car and you are going a constant speed on a perfectly sooth road, you cant tell that you are moving at all.

Earthbound csanple 2: If you flip a coin in a car noting at constant speed, it is just life you verse standing still. When the Flight attendant pours you a colic in the airplane, the colic pours just Hike it would if the plane verse still on the runway.

These are both examples of postulate I, and they say, basically, that there is no way to detect the stake of uniform notion without having a reference.

Pootulate 2. The spead of light in empty space will alvays have the sane value regordlese of the motion of the source or motion of the observer.

Go back to the train/arrou esanple again. Uhat would the arrou look tilic if you fleu along begide it? It vould look lifis it uns at rest.

Einstain askisd the $\operatorname{sanc}$ queation about light - If you could traval begida it, uhat would it look Hika? As it turns out (and this is veird), if you could sonchou traval cloge to the apeed of light, you vould gtill neasure the apced of light noving auay Pron you at $300,000,000 \mathrm{n} / \mathrm{s}$.

In other vords:

The speed of light in all rePerence Prance is the ฮดกร.

This idea secned to lead to nony paradoses in physics, and it concerned nany phygicistes in the late 1800s. Houcver, it uas ncagured to be true, so Eingtein get about trying to Pigure out uhat vas going on.

Eranple:
nother ship


Flosh of light


The baby ship alvays secs the speed of light as $300,000 \mathrm{in} / \mathrm{s}_{\text {, }}$ regardlese of hou Past either ship is going. Ueird, but truc.

## Tinc Ditation

In order to begt understand this tricliy concept of "tine dilation," ue have to congtruct a fittle "thought esperinent:" Albert Einstain uas Panous Por coning up with thought experinents and he did it to halp people understand the conceptes better.

Pretend you are in a spaceship sitting outside BHS. You look at the clock, and it gays "R noon." Ural docs this nan?

Light reflects off the clock and carries the information "I2 noon" to your eyes.
-If you nova your head, the light docs not hit your eyes, and if someone out in space verse to sec the light, he or ohs would say, "It is IR noon on Earth nov."
-Both you and the other observer gee $\mathbb{P}$ noon at different tinge.
now pretend you are in the spaceship moving away Pron BHS at the speed of light. You would lies up with the information in the light that says it is "I2 noon."

So, if you travel at the speed of light, then, always tells you it is 12 noon back hone. Tine is Frozen!

These are the extrence of this thought esperinent. Uhat uould happen in the niddle? Uhat would the tine read if you vere traveling slover than the speed of light?

- The clock will run goncuhat slou, betucen 60 seconds in a ninute and 60 seconds per infiniky tinc.
- Fron your noving franc of refarence, the clock and the events in the reference Pranc uill be geen in slou notion.
This is called tine dilation.

Special Relativity nalice us thinli tuice about our universe. Ue linou that spaed is relative, uhich neans that it depends on the speed of the source and observers.

But, the speed of light is absolute - it is not dependent on the apeed of the gouree or the observer.
Us usually think of tinc as absolute, neaning that it pagses at the sanc rate regardlegs of uhat is happening. Our spaccehip esanple shous that this isn't true.

## Stationory Light Clock

To continue with the thought esperinent, inagine a "light clock." Our light elock consists of an eaply tube with a nirror at anch and.


Mirror A flash of light bounces back and Porth betveen the parallel nirrors.

Light
Flash
If the length of the tube is 3000 neters (a big tube), the light will talic $3000 \mathrm{~m} / 3 \mathrm{~s} 10^{8} \mathrm{n} /$ $\boldsymbol{s}=.00001 \mathrm{ls}$ to go Pron one end to the other.

Let' s say we put our tube in a spaceship, and we watch it go past us at high speed.



The person in the spaceship sees the light go up and down, and the person on the ground see the light travel up and over and over and down.

Now, the light we sec has to travel Farther (Pron our point of views. Renenber Einstein's $2^{\text {nd }}$ postulate, though: The speed of light will be measured by any observer as c (3:40<super>0/s). In order for that to happen, a clock "tick" nut tais longer for Uฮ Мฮ observers.
$c=\frac{\text { Distance }}{\text { Time }}$

$=$ Distance


The slowing of tine is not only for the light clock it is tinc itgelf in the noving franc of rePerence as vicucd our Pranc of reference

The occupants of the spaceship do not notice anything difPerent about the tine in thair apaceship (Einstcin' s second postulate. all laus of nature are the sanc in unifornly noving france of reference].

Hou do the spaccohip occupanks vicu our tinc? Thay sec US as sloued doun! Fron their Pranc of rePerence, they ace our tinc running slou, jugt ag ve ace theirs running slou.
-not a parados becauge the neagurenenks do not need to agrec; they are in diPPerent Prances of rePerence. They will agres on the speed of light!


## The Tine Dilation Equation



The Light Clock is moving to the right at speed $\mathbf{v}$
The diagonal lines shout the path of the light Plash as it starts Pron the lover mirror at position $I$, goes to the upper mirror at position 2 , and then back to the lover mirror at position 3.

From the clock' s franc of reference, the tine it talkies light to go betucen the two mirrors is $t_{0}$.
-This is straight up and down tine
-Becquac $c$ is constant, the vertical distance is $d=v t=c t_{0}$ 。
-The vertical distance is the sane for both france.

The symbol te repregenke the tine it talices for the light to move Pron one mirror to the other as gean Pron the outside.

The spec of the Plash is still $c_{1}$ and the tine to go Pron position $\mid$ to 2 is $t$, so the diagonal distance is $v t$.

These three distances alice up a right triangle, and use can do sone math to solve for $\dot{\varepsilon}$

$$
\begin{aligned}
& (c t)^{2}=\left(c t_{o}\right)^{2}+(v t)^{2} \\
& (c t)^{2}-(v t)^{2}=\left(c t_{o}\right)^{2} \\
& t^{2}\left[1-\left(v^{2} / c^{2}\right)\right]=t_{o}^{2} \\
& t^{2}=\frac{t_{o}^{2}}{1-\left(v^{2} / c^{2}\right)} \\
& t=\frac{t_{o}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}
\end{aligned}
$$

