
EcoSim: A Language and Experience Teaching
Parallel Programming in Elementary School

Chris Gregg Luther Tychonievich James Cohoon Kim Hazelwood
Department of Computer Science

University of Virginia
PO Box 400740

Charlottesville, VA 22904

ABSTRACT
Traditional introductory programming classes teach sequen-
tial programming using a single-threaded programming model.
It is typical to wait until a student has developed proficiency
in sequential programming before teaching parallel program-
ming. As computer hardware becomes increasingly parallel,
there is a greater need for software engineers who are profi-
cient in designing parallel programs, and not just by “paral-
lelizing” sequential designs. Teaching parallelism first is an
important step towards educating tomorrow’s programmers.

We present an overview of a five-day introductory parallel
programming course. We taught the course to nine and ten
year-olds with no prior programming experience. Our course
utilized a fundamentally parallel language we designed for
the course, one with a near-natural language syntax that
exposed the parallel processors throughout the code. This
language, coupled with an interactive online programming
environment, allowed us to teach a wide range of parallel
programming concepts in a very limited timeframe.

We also present examples of student-written code that
demonstrates their understanding of some basic parallel pro-
gramming concepts, and we describe the overall course goal
and specific lesson plans geared towards teaching students
how to “think parallel.”

Categories and Subject Descriptors
D.3.2 [Concurrent Programming]: Language Classifica-
tions—concurrent, distributed, and parallel languages; K.3.2
[Computers and Education]: Computer and Information
Science Education—computer science education, curriculum

General Terms
Languages, Design, Human Factors

Keywords
Concurrent languages, parallel languages, instructional de-
sign, introductory programming, pedagogy, education, read-
ability, elementary school, K-12

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’12, February 29–March 3, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02 ...$10.00.

1. INTRODUCTION
Introductory programming classes are often taught using

languages designed primarily for single-threaded applications.
Multi-threaded or parallel programming concepts are consid-
ered advanced. It is rare that students learn about parallel
programming before a second or third programming course.
Traditionally, many colleges and universities in the U.S. pro-
vided only a single parallel programming course, often as a
senior-level undergraduate elective. When students do learn
parallel programming, many have difficulties transitioning
from a sequential-programming mentality to a parallel pro-
gramming mentality. One manifestation of this difficulty
is that parallel programming is considered “hard” by many
students and instructors alike [9].

As parallel platforms become more common, parallel pro-
gramming skills are becoming increasingly important. Within
the last five years, multicore computing has become the de
facto standard on desktops and laptops. General Purpose
GPU (GPGPU) computing has matured such that multi-core
GPUs can be programmed with minimal extensions to tradi-
tional languages such as C++ and Python [5]. These trends
are expected to continue in coming years [7]. To take full
advantage of this increasing parallelism, programmers must
understand traditional parallel concepts such as race con-
ditions, atomicity, synchronization, and deadlock. Beyond
those skills, they must also be able to look at computing
problems and devise solutions that utilize parallel processes.
Parallel programming requires a change in mindset as well
as practice, adopting new models of what activities are “easy”
and “hard” to guide the development of algorithms that can
be executed efficiently by highly-parallel hardware.

Rather than strive to correct existing sequential program-
ming habits, we developed an introductory parallel program-
ming course specifically targeting novice programmers. The
class, titled “Programming the Computers of the Future,”
was offered during a five-day weekend enrichment program
to students from the 4th and 5th grade (9 and 10 years
old). The choice of this age group was primarily based on
the opportunity we had to teach novice programmers, but
pedagogically the methodology we describe could be applied
to any group of beginner programmers. None of the students
in our classes had significant prior programming experience.
Each class period was two hours long. A week elapsed be-
tween each class, during which the students could access
the programming development environment online to con-
tinue learning independently, although no out-of-classroom
assignments were given.

Our course was designed around three objectives.

1: a plant has
2: a position
3: size, a number
4: a color
5:

6: create 10 plant and for each
7: do in order
8: replace the plant’s color with green
9: replace the plant’s size with 10

Figure 1: A simple EcoSim program to define and
create ten green “plants” on the screen.

• Introduce the students to basic parallel programming
ideas using multiple processors.
• Help the students develop a mental model of what

programming is and what computers do.
• Teach the students to “think parallel” about computing

problems.

We measured these objectives through exit surveys, informal
interactions with individual students, and by inspecting the
code produced by each student. Structured assessment was
not possible within the enrichment program structure.

The course used a programming language of our own design,
called EcoSim1. EcoSim uses an English-like syntax and
makes parallelism both pervasive and visible to the user. We
also developed an online environment in which students could
write and run code from any computer. This environment
gives each students step-by-step feedback on the behavior of
each emulated processor. Figure 1 shows an example EcoSim
program that defines and draws ten green “plants” on the
screen, where the plants are represented by circles of radius
10. Figure 4 shows the EcoSim development environment,
which includes a code window, settings, a console window
with output messages, and a window for graphical objects.

2. ECOSIM
We looked for four characteristics in the language we used

in our course2:

Visibly Parallel: We wanted a language that was parallel
unless requested otherwise. We also wanted the idea
of parallel processors executing the instructions to be
emphasized throughout the language and visible in the
runtime environment.

Self-Explanatory: We did not want to have to translate
what code meant. We didn’t want to re-define symbols
like “=” or to introduce new symbols or words. We also
wanted all elements of the language to be accessible at
the 4th-grade level.

Web-Based: We wanted the students to be able to work at
home without installation. This meant building on top
of either Javascript or Flash, the only tools we could
count on all the students having already installed.

Engaging: We wanted every program the students wrote
to interest them. Every program should be graphical,
with text reserved for diagnostic information.

1EcoSim is so-named because we envisioned students using
it to program ecological simulations.
2We considered, but rejected, a fifth characteristic: a “com-
plete” language. As an enrichment course, we did not antici-
pate being a gateway into serious software development. In
hindsight, this may have been a poor choice.

Since we were aware of no language having all four desired
characteristics, we created our own. We designed the syntax
and semantics, wrote a type-checking parser, interpreter,
and runtime environment in Javascript. We also created
an interactive environment using HTML and CSS, with the
HTML5 Canvas element providing graphical output.

2.1 The EcoSim Runtime
The EcoSim environment has three basic interfaces: the

code entry pane, a status window listing the results of parsing
and the behavior of each processor, and a graphical display of
the state of each object. The graphical display automatically
draws a circle for each object that had a defined position
and size in the student’s code. By automating the display
we were able to focus on core programming concepts rather
than teaching about a graphics API.

In addition to the user interface, the EcoSim runtime
provides the following:

A fixed number of virtual processors.
At each processing step the interpreter assigns to each
processor a task; this task is displayed both in the code
pane and in the status window.

A shared work queue for ongoing tasks.
Processors pull jobs off this queue in a random order
and insert any unfinished work back on the queue at
the end of each step.

A global list of objects of each type.
Each object is placed on a global list of objects of its
type when it is instantiated. These lists are used to
handle “for each” and “for some” constructs.

A collision tracker and set of collision handlers.
The code may provide handlers for collisions of objects
with position and size. These are given to the processors
if the work queue is empty.

A set of idle tasks.
If the work queue is empty and there are no collisions
to handle, the remaining processors are given jobs from
a set of low-priority tasks.

The runtime is aware of four types: number, color (HTML-
compliant color names), comparison (boolean values; used
only behind the scenes to type-check guard expressions), and
position (a pair of numbers, x and y). User-defined types
are built out of these parts.

2.2 The EcoSim Language
Three principles guided our design of EcoSim’s language

constructs: “audience: processor”, “self-describing syntax”,
and “anonymous by default.” The first two are directly
parallel our first two objectives: we wanted the processors
to be visible throughout the language and the language to
be self-explanatory. We added the third principal, defaulting
to anonymity, to reduce students’ need to come up with
names for variables, simplifying the programming process.
We hoped it would also reduce the likelihood of conflict over
limited, named computing resources, but this kind of conflict
did not arise in any class example.

Rather than provide a full description of the language that
grew out of these principles, we provide a few elements that
typify our design choices and rely on EcoSim’s self-describing
character to render later code examples understandable.

2.2.1 Statements
The first operator we considered was the assignment op-

erator. We had discovered in previous interactions with
CS1 students that the syntax used in “x = x + 1” was often
confusing. We brainstormed ways we might explain that op-
eration, things like “x is redefined; it’s new value is 1 + the
old value of x,” but most were too verbose or failed the “au-
dience: processor” principle. We finally settled on “replace
x with old x + 1”, which we implemented as two rules: an
assignment syntax of “replace lvalue with rvalue” and
a requirement that the word “old” precede rvalue variables
that also appear in the lvalue.

Similar processes resulted in “while(1 < 2)” becoming
“as long as 1 < 2”, “else”being replaced with“otherwise”,
and “double x = 3” becoming “start x as 3”. We replaced
the membership operator (commonly “.” or “->”) with the
more English-like “’s” (as in “baz’s position’s x”). We
also implemented type inference to create a statically-typed
language without needing to declare variable types.

The runtime keeps a list of objects of each type (see
§2.1); we add to these lists by writing “create number
type” and remove with a “destroy” command. We can
access objects either by grabbing one randomly selected
object:

for some number
destroy the number

or by accessing all of them in parallel:

for each number
replace the number with the old number + 1

2.2.2 Blocks
Blocks caused us some difficulty with our “self-explanatory”

goal because they largely don’t exist in spoken language. We
decided to go with indentation as more readable than delim-
ited blocks, but neither we nor our students were entirely
happy with this choice.

The basic notion behind a block is “do each of these things
once”, followed by a list of statements. We distinguished dif-
ferent kinds of blocks based on their sequentiality and atom-
icity. This gives the four blocks types “do in order”, “do in
any order”, “do atomically in order”, and “do atomically
in any order”. Atomic blocks implicitly lock all of the vari-
ables they accesses. “In order” blocks can handle only a
single processor, while multiple processors can execute the
statements of an “in any order” block simultaneously.

Examples of blocks are provided in Figures 1, 2, and 3.

2.2.3 Definitions
We observed that structures, properties, and subroutine

definitions are describing “what we mean by X” rather than
“you should do X”. We thus decided that, per the “audience:
processor” principle, we should word these to inform, not
direct, the processor.

For example, to introduce a structure type named “plant”
with a named field “size”, an anonymous position field, and
two anonymous colors, we write

a plant has
size, a number
a position
2 color

We can also define properties for plants:

a plant’s age is the plant’s size − 5
a plant’s trunk is the plant’s 2nd color

Properties are always single expressions and are accessed

exactly like fields. Multiple fields (such as “color” above)
can only be accessed by compile-time ordinals like “5th”; you
cannot write “the plant’s nth color” for variable n.

Subroutines are defined with a“how to”:

how to add a number years to a plant
replace the plant’s size with the plant’s old size

+ the number

Calling a subroutine is straightforward:

for some plant
add 3 years to the plant

Because this syntax for defining and calling subroutines is
context sensitive, it is not easy to achieve using most parser
techniques. Our parser type-checks and builds the symbol
table as it goes, so when we parse a line “how to words” we
already know which of the words identify types and which
are unbound words naming the subroutine. Similarly, we
know from context that “the plant” is a value and thus that
we are calling a method named “add years to ” and not
“add years to the plant”.

2.2.4 Handlers
The last element of the language we want to identify is colli-

sion handlers and idle operations.

when a bulldozer hits a plant
destroy the plant

when bored
create a plant

Again, these are worded to address the processor in a self-
explaining way. They prevent the need for an explicit simu-
lation loop and make event-oriented programming straight-
forward. Multiple “when bored” declarations were permitted,
with the runtime selecting between them at random.

The general structure of our collision handlers would have
worked with arbitrary predicates, such as “when a plant’s
size > 7”. We chose not to expose this generality to the
students because they could easily write their own single-
object predicates already and collisions covered all of the
multi-object interactions we expected in an ecological simu-
lation.

3. COURSE OVERVIEW
The pilot course we created was for fourth and fifth grade

students in an enrichment program that is run through our
university. We designed the course and EcoSim concurrently,
for an audience of self-selected primary school students with
no prior formal programming experience.

3.1 Ecosystem in Parallel
The original conception of the pilot course was, simply,

“Let’s teach fourth and fifth graders about parallel program-
ming.” To streamline our lessons we decided to structure
our examples around a single theme. The theme we selected
was “ecosystems” because it is familiar to students at that
level, inherently parallel, easy to visualize, and allows for
a wide range of example applications. By the end of the
course students had simulated ecosystems ranging from sim-
ple growing plants to complex interactions between diurnal
locally-seeding plants, competing herbivores and hunters, car-
nivorous and poisonous plants, and other more imaginative
fantasy elements.

Students quickly learned the importance of initial condi-
tions and parameters, both from a computational perspective
and a scientific one. For example, students found that start-
ing ten thousand herbivores in a field with only ten plants

both results in over-grazing and starvation and slows the com-
puter to a crawl as it looks for each object’s collisions. We
spent a number of classes discussing the remote St. Matthew
Island in Alaska, where a herd of reindeer overpopulated and
subsequently died out [14, 17]. With the EcoSim model the
students were able to adjust the parameters and look for an
equilibrium that would have allowed the reindeer to survive.

3.2 Getting the Students to “Think Parallel”
We began each class period with a conversation and activity

introducing a new parallel programming concept. Table 1
shows the group activities we conducted and their associated
parallel processing concept or concepts. During and after
each activity, we discussed the associated concept, and in
most cases we then wrote a simple program in EcoSim that
demonstrated the idea.

For example, on the first day of class we introduced the
students to the difference in computational time between par-
allel and sequential processes by having them sort themselves
by height. First, we allowed the students to line themselves
up by height, all at once (the parallel method), and we timed
this; it took roughly forty-five seconds for a class of eighteen.
Next, we re-randomized the class and assigned one student to
be the “processor,” in charge of sorting the students. Unsur-
prisingly, this took roughly twice as long, leading to a fruitful
discussion on why parallel processing can be faster. We then
showed the students that EcoSim allows a programmer to
set the number of processors that will be used to run the
program and had the students experiment with the speedups
resulting from multiple processors.

After the opening class discussion we would transition to
programming exercises. Each student would sit at a com-
puter with EcoSim loaded into their web browser, and they
were able to type out the examples as we wrote them on the
overhead projector. For example, after the race condition
activity, we wrote the programs in Figure 2. These programs
demonstrate a race condition stemming from allowing mul-
tiple processors to replace the moths’ color in an arbitrary
order. When the “In order” program runs, all of the moths
end up black at the end, but when the“In any order”program
runs, an indeterminate number of moths end up black and
the remainder are gray. This outcome was unexpected for
many of the students, and we allowed them to experiment
with the code, trying out other conditions to explore the idea
more fully.

The ability to step through code in the EcoSim environ-
ment allowed students to see how the computer followed
their instructions. For example, if EcoSim is set to use two
processors for the “In order” program from Figure 2, the
students see that individual “moths” changing color two at a
time. Often when students were surprised at some result of
program behavior we would step though the code, discussing
how each processor’s actions effected the simulation.

3.3 The Use of Example Programs
As with any programming course, example programs played

an important role in teaching our course. Because this course
was the first time most of the students had seen any program-
ming language at all, we decided to provide a scaffolding in
the form of example programs that they could look at and
modify. EcoSim has a “Load Example” button that brings up
a listing of programs written by the instructors. Many times
during class we would have students pay attention to the
projector as we typed in the code for a program. Once they
saw our initial work, we would have them load the example

In order:
1: a moth has
2: a position
3: a color
4: a moth’s size is 50
5:

6: create 10 moth and for each
7: do in order
8: replace the moth’s color with gray
9: replace the moth’s color with black

In any order:
1: a moth has
2: a position
3: a color
4: a moth’s size is 50
5:

6: create 10 moth and for each
7: do in any order
8: replace the moth’s color with gray
9: replace the moth’s color with black

Figure 2: Example EcoSim programs that demon-
strate race conditions. In the “in order” program,
all moths end up black, while in the “out of order”
program the final color is dependent on a race con-
dition.

instead of typing it out. This provision saved time (not all
pre-teens are fast typists), and it also allowed us to start the
whole class at the same point in a program’s development.
In some cases we gave them example programs that were
missing a line or two and asked them to fill in the details
themselves. We encouraged the students to modify the pro-
grams as well. Students that completed programming tasks
before others in the class were able to modify the example
programs, write their own programs, or return to programs
they had been working on previously.

Another reason we relied on example programs was to
build a compendium of programs that the students could go
back and look at if they did not remember the details of a
particular topic. Frequently, we would direct the students to
previously covered examples.

3.4 Student Assessment
Because this course was an ungraded enrichment class, we

did not perform formal assessments (e.g., tests or deadline-
based homework). However, we reviewed the students’ work
regularly and gave feedback often. At the beginning of each
hour of class, we asked whether anyone had something they
wanted to show the class. Many students enjoyed displaying
their work on the projector and seemed motivated to create
interesting programs they could share with the rest of the
class. Some students showed off work that they completed
on their own at home during the week between classes, which
we highly encouraged.

All student work is captured in a MySQL database that we
were able to review regularly. Each time a student clicks on
the “Setup Code” (which parses the code and reports errors),
the current program is saved, and all versions are retained.
Therefore, we were able to look at a students progress, includ-
ing how many attempts they made at fixing syntax errors
and how they went about writing their programs. We used
this analysis to determine where we needed to review; e.g.,
once we realized how much trouble the students had with
understanding indentation and blocks, we modified our lesson
plan to include a review and further examples.

Concept Group Activity

Parallel speedup Students sort themselves, and then one student sorts everyone.
Locks / Atomicity Everyone shares a pen to write on the whiteboard to increment a number.
Race Conditions Students roll dice until they get a six, read a number off the board, increment it, roll

more dice, and call out the new number, which is written on the board.
Divide and Conquer All students start with a number, and half hand to their neighbor to add together. This

continues until one student has the total sum.

Table 1: Group activities.

23: when bored
24: for each pacman
25: do in any order
26: move the pacman’s position a random number

between 10 and 50 right
27: move the pacman’s position a random number

between 10 and 50 left
28: move the pacman’s position a random number

between 10 and 50 up
29: move the pacman’s position a random number

between 10 and 50 down
30:

31: when a pacman hits a ghost
32: destroy the pacman

Figure 3: Part of one student’s “Pacman” program,
that demonstrates a competent understanding of
the programming language and its parallel program-
ming structure.

4. STUDENT WORK AND OUTCOMES
During the course the students had an opportunity to mod-

ify example programs and write their own applications. We
analyzed the database of student programs to perform basic
analysis of each student’s programming process. Students
worked on between twelve and thirty-two separate programs
each, with a mean of twenty programs per student. We
observed that the students who worked on more programs
tended to be the ones who picked up the material the fastest
in class, and were also more likely to work on programs at
home. The students’ programs ranged from simple five-line
examples to over 150-line simulations of complex ecosys-
tems. In addition, some students created novel programs
that demonstrated proficient understanding of the language.
Figure 3 shows part of one student’s novel “Pacman” pro-
gram, demonstrating that some students were able to use the
programming elements discussed in class in a novel, parallel
context.

As with any introductory programming course, students
can get frustrated with the debugging process. When a
student clicks on the “Setup Code” button in EcoSim, the
parser reports the first parse error (if one or more exist) and
highlights the offending line number. Over the duration of
the course, it took the students an average of 4.2 attempts
to fix a program that had errors. If a student gave up on
a program with errors by starting or opening a different
program, he or she attempted an average of 8.3 times to fix
the error before giving up.

On the last day of class, the students demonstrated their
work to their parents and siblings. We had each student to
prepare a program that showcased their own work—either
one they created on their own or an example from class that
they modified significantly. They enthusiastically demon-
strated their programs, including various modifications to
the St. Matthew Island ecosystem, programs that had snow

Figure 4: The EcoSim web-based integrated devel-
opment environment hosted at http://ecosimulation.
com. Code is written and debugged in the top left
window, settings are on the top right, a console with
runtime and debug information is below the settings,
and the main window shows the graphical output of
the program.

“fall”on the screen and accumulate at the bottom, simulations
of mice searching for cheese, etc.

5. RELATED WORK
Parallel computing is not new, dating back to 1955 and

the IBM 704 [12]. Today, multicore desktop and laptop com-
puters are ubiquitous—when novice programmers write their
first code today, it is often running on a parallel computer.
In order to make the most efficient use of these computers,
parallel programming is necessary.

There are numerous programming languages available for
desktop parallel programming. Many of these languages are
extensions, libraries, or APIs built on top of sequential lan-
guages such as C or Fortran (e.g., OpenMP, CUDA, OpenCL,
Intel Thread Building Blocks, pthreads, Cilk, Co-array For-
tran, and Unified Parallel C), requiring a novice programmer
to first become proficient in a sequential language before
tackling the parallel programming concepts. While this does
not necessarily hinder a student’s overall programming abil-
ity, parallel programming tends to receive less emphasis than
simply learning the sequential aspects of the language.

There are languages designed specifically for parallel pro-
gramming, but they tend have advanced syntax and are
targeted towards students already proficient at programming
in general (e.g., X10 [8], Go [4], and ParaSail [21]). Novice
programmers would almost certainly find it difficult to learn
one of these languages as an introduction to programming.

Several researchers have investigated teaching parallel pro-
gramming concepts at the undergraduate level [13, 18, 23]
and at least one at the secondary school level [22]. These stud-

ies targeted both first and second year students using openly
available parallel programming languages (e.g., OpenMP,
MPI, and CUDA). A common result was that students were
motivated more by concrete examples of parallel code and
significant classroom programming time rather than by ab-
stract concepts delivered in a lecture. We likewise utilized
concrete examples and in-class programming time.

Parallel concepts could be taught using groups of robots.
However, robotics packages aimed at younger students such
as Mindstorms [19], PicoCricket [2], and Arduino [1] focus
on single-processor single-robot programming tasks.

Several successful languages have been designed to have
English-like syntax, including COBOL [3], AppleScript [6],
and Wolfram Alpha [15]. Like EcoSim, each was designed to
accessible to non-programmers and each targets a relatively
narrow set of possible use cases. None are targeted toward
teaching parallel programming concepts.

An alternative to “readable” languages is to use a graphical
rather than textual representation of the program. Recent
examples of graphically-represented languages that are aimed
at children include Alice [10], Scratch [16], Greenfoot [11],
and Kodu [20]. While an exhaustive survey of graphical
programming languages was impractical, we were unaware
of any that did not require installation and were suitable for
teaching core parallel programming concepts.

6. CONCLUSIONS
We have demonstrated that it is possible to teach ele-

mentary school students parallel programming, even if they
are completely novice programmers. We were able to teach
basic programming skills as well as concepts such as race
conditions, atomicity, locks, and the speedups that can be
obtained by using multiple processors. None of our students
had any difficulty with parallelism, and most were able to
explain core parallel concepts to their parents at the end of
the course.

To facilitate learning in our course, we

• designed a unique, English-like parallel programming
language and associated visual web interface;
• provided a curriculum that taught programming through

a parallel lens; and
• utilized learning activities, think-pair-share discussions,

and individual guided exploration to teach each con-
cept.

We found the students eagerly learned the EcoSim language.
Despite some trouble with the notion of indented blocks, most
students were able to successfully write significant programs
without difficulty.

Parallel programming does not have to be difficult to teach
or learn, and it is a skill that will become even more important
as computers continue to become more parallel in the future.

Acknowledgments
This work was supported in part by NSF grants BPC-0739259,
BPC-104282, CNS-0747273, CSR-0916908, and CNS-0964627;
and awards from Microsoft and Google. We would like to
thank the University of Virginia Saturday and Summer En-
richment Program for the opportunity to teach Programming
the Computers of the Future during the winter 2011 ses-
sion. We are grateful to the students in the class for their
enthusiasm for the subject. We would also like to thank
the anonymous reviewers for their helpful comments and
suggestions.

7. REFERENCES
[1] Arduino. Available: http://arduino.cc.
[2] Picocricket. Available: http://picocricket.com.
[3] General Information Manual, IBM Commercial Translator.

IBM Corporation, New York, 1959.
[4] The go programming language. http://golang.org,

accessed on August 6, 2011.
[5] Archives for programming languages.

http://gpgpu.org/tag/programming-languages, accessed
on July 31, 2011.

[6] Apple, Inc. Applescript overview. http:
//developer.apple.com/library/mac/documentation/
AppleScript/Conceptual/AppleScriptX/AppleScriptX.pdf,
accessed on August 9, 2011.

[7] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen,
J. Wawrzynek, D. Wessel, and K. Yelick. A view of the
parallel computing landscape. Communcations of the ACM,
52:56–67, October 2009.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10:
an object-oriented approach to non-uniform cluster
computing. SIGPLAN Not., 40:519–538, October 2005.

[9] C. R. Cook, C. M. Pancake, and R. Walpole. Are
expectations for parallelism too high?: a survey of potential
parallel users. In Proceedings of the 1994 ACM/IEEE
conference on Supercomputing, pages 126–133. ACM, 1994.

[10] S. Cooper, W. Dann, and R. Pausch. Alice: a 3-d tool for
introductory programming concepts. J. Comput. Small Coll.,
15:107–116, April 2000.

[11] P. Henrickson. A direct interaction tool for object-oriented
programming education. Master’s thesis, University of
Southen Denmark, Maersk Mc-Kinney Moller Inst. for
Production Technology, 2004.

[12] R. Hockney and C. Jesshope. Parallel computers 2:
Architecture, programming, and algorithms, volume 2.
Taylor & Francis, 1988.

[13] D. Johnson, D. Kotz, and F. Makedon. Teaching parallel
computing to freshman. In Conference on Parallel
Computing for Undergraduates, pages 1–7, 1994.

[14] D. Klein. The introduction, increase, and crash of reindeer
on St. Matthew Island. The Journal of Wildlife
Management, pages 350–367, 1968.

[15] W. A. LLC. Wolfram|Alpha: Computational knowledge
engine. http://www.wolframalpha.com, accessed on August
9, 2011.

[16] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The scratch programming language and
environment. ACM Transactions on Computing Education,
November 2010.

[17] S. McMillen. St. matthew island. http://www.
recombinantrecords.net/2011/02/09/st-matthew-island,
accessed on August 6, 2011.

[18] C. Nevison. Parallel computing in the undergraduate
curriculum. Computer, 28(12):51–56, December 1995.

[19] S. Papert. Mindstorms: children, computers, and powerful
ideas. Basic Books, Inc., New York, NY, USA, 1980.

[20] K. T. Steele. Kodu language and grammar specification.
http://research.microsoft.com/en-us/projects/kodu/
kodugrammar.pdf, August 2010.

[21] S. T. Taft. Designing parasail, a new programming language.
http://parasail-programming-language.blogspot.com,
accessed on Auguet 9, 2011.

[22] S. Torbert, U. Vishkin, R. Tzur, and D. J. Ellison. Is
teaching parallel algorithmic thinking to high school
students possible?: one teacher’s experience. In Proceedings
of the 41st ACM technical symposium on computer science
education, SIGCSE ’10, pages 290–294. ACM, 2010.

[23] J. Tourino, M. Martin, J. Tarrio, and M. Arenaz. A grid
portal for an undergraduate parallel programming course.
Education, IEEE Transactions on, 48(3):391–399, aug. 2005.

