
Analyzing Program Flow within a Many-Kernel OpenCL
Application

Perhaad Mistry
Electrical and Computer Engg.

Northeastern University
Boston MA

pmistry@ece.neu.edu

Chris Gregg
Computer Science
University of Virginia
Charlottesville VA

chg5w@virginia.edu

Norman Rubin
Advanced Micro Devices

Boxborough, MA
norman.rubin@amd.com

David Kaeli
Electrical and Computer Engg.

Northeastern University
Boston, MA

kaeli@ece.neu.edu

Kim Hazelwood
Computer Science
University of Virginia
Charlottesville, VA

ABSTRACT
Many developers have begun to realize that heterogeneous
multi-core and many-core computer systems can provide sig-
nificant performance opportunities to a range of applica-
tions. Typical applications possess multiple components that
can be parallelized; developers need to be equipped with proper
performance tools to analyze program flow and identify ap-
plication bottlenecks. In this paper, we analyze and profile
the components of the Speeded Up Robust Features (SURF)
Computer Vision algorithm written in OpenCL. Our profil-
ing framework is developed using built-in OpenCL API func-
tion calls, without the need for an external profiler. We
show we can begin to identify performance bottlenecks and
performance issues present in individual components on dif-
ferent hardware platforms. We demonstrate that by using
run-time profiling using the OpenCL specification, we can
provide an application developer with a fine-grained look at
performance, and that this information can be used to tailor
performance improvements for specific platforms.

Categories and Subject Descriptors
C.1.3 [Processor Architecures]: Other Architecture
Styles—Heterogeneous (hybrid) systems; D.2.8 [Software
Engineering]: Metrics—performance measures

General Terms
Profiling, Performance Measurement

Keywords
OpenCL, Profiling, GPGPU, Heterogeneous computing,
Computer Vision, SURF, Performance tools

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU-4Mar 05-05 2011, Newport Beach, CA USA
Copyright 2011 ACM 978-1-4503-0569-3/11/03 ...$10.00.

1. INTRODUCTION
Over the past several years we have seen rapid adoption

of general purpose processing moving to new heterogeneous
desktops, laptops, and mobile systems that include proces-
sors with multiple cores. Stream programming languages
such as AMD’s Brook [6], NVIDIA’s CUDA programming
language [1] and, more recently, OpenCL [19] have enabled
relatively straightforward development of parallel applica-
tions that can run on commodity hardware across a number
of platforms. OpenCL is an open standard maintained by
the Khronos group, and has received the backing of major
graphics hardware vendors.

In heterogeneous computing, knowledge about the archi-
tecture of the targeted set of devices is critical to reap the
full benefits of the hardware. For example, selected kernels
in an application may be able to exploit vectorized opera-
tions available on the targeted device, and if some of the
kernels can be optimized with vectorization in mind, the
overall application may be sped up significantly. However,
it is important to gauge the contributions of each kernel to
the overall application runtime. Then informed optimiza-
tions can be applied to obtain the best performance.

When utilizing a portable programming framework like
OpenCL, we also need the ability to assess the benefits of
each optimization from a consistent target-neutral interface.
Given the fact that OpenCL allows us to choose the specific
kernels to execute at runtime, it is important to be able to
make choices across a range of target architectures.

Application profiling can be used effectively to guide opti-
mizations. A profiling tool can allow a developer to measure
the execution time of the entire application, broken down on
an individual kernel basis. In a typical heterogeneous com-
puting scenario, an application starts out executing on the
CPU, and then the CPU launches kernels on a second device
(e.g., a GPU). The data transferred between these devices
must be managed efficiently to minimize the impact of com-
munication. Data manipulated by multiple kernels should
be kept on the same device where the kernels are run. In
many cases, data is transferred back to the CPU host, or
integrated into CPU library functions. Analysis of program
flow can pinpoint sections of the application where it would
be beneficial to modify data management, leading to more
efficient use of the overall system.

1.1 SURF
In this paper, we demonstrate the utility of our profiling

framework using the SURF [4]. We were interested in devel-
oping a very efficient parallelized version of the SURF frame-
work in OpenCL. SURF represents a large class of applica-
tions where profiling and profile-guided optimization can be
have a large impact on performance. One major challenge
with applications like SURF is that its performance is highly
data dependent. We use these features of SURF to illustrate
how profiling can be used to characterize performance, iden-
tify bottlenecks, and explore optimization spaces. The main
contributions of our work include:

• A new methodology for providing profiling for OpenCL
parallel applications.

• A detailed description of this methodology when cap-
turing OpenCL events.

• An application of this framework to accelerate a clas-
sical Computer Vision application.

This paper is organized as follows. In Section 2 we provide
background on parallel program analysis, continuous pro-
filing and interest point detection in Computer Vision. In
Section 3, we briefly describe the SURF algorithm and dis-
cuss appropriate methods for parallelization. In Section 4 we
discuss our event handling framework. In Section 5 we cover
potential usage scenarios of our framework using SURF.

2. BACKGROUND AND RELATEDWORK

2.1 Heterogeneous Application Profiling
Analysis and profiling of heterogeneous applications is a

burgeoning research topic. There has been significant pre-
vious work discussing how best to measure performance of
heterogeneous systems. Many of these studies focused on
individual kernel optimization [25, 22]. If they do consider
multi-kernel profiling, they require device driver modifica-
tions and external libraries. For example, Malony et al.
developed TAUcuda, which can profile CUDA applications
using the TAU Performance System [18]. Our work follows a
similar path, but uses higher level function calls as provided
for in the OpenCL specification. While we cannot obtain
low-level information available specific to a driver/device, we
apply our framework across different devices and can utilize
it for a range of purposes including automated tuning and
assessment of kernel optimizations.

Continuous runtime profiling has been studied for identi-
fying application stalls in commercial data-centers [3] where
the benefits of providing a built-in profiling subsystem are
well established. Runtime profiling for multicore architec-
tures is discussed by Furlinger et al. [13]. This prior work
deals with runtime profiling in OpenMP, and requires anno-
tation of source code. Spafford et al. also take a multi-kernel
approach to profiling [23], but utilize the external Tau sys-
tem for their analysis.

2.2 OpenCL Profiling
The OpenCL standard includes a profiling function

clGetEventProfilingInfo, which returns timing statistics
regarding OpenCL commands such as kernel launch and de-
vice IO. Common usage scenarios of OpenCL events include
managing asynchronous IO and timing of code [19, 14].

Previous work on scheduling algorithms targeting hetero-
geneous devices [16] is complimentary to our work. A pro-
filing framework that binds tightly with an open standard
can enable more complicated and dynamic scheduling poli-
cies across devices for programs whose performance is data-
driven. We aim to be able to extract profiling data from an
application like Tau, and across platforms and devices like
gDebugger [21] which is a debugging framework for GPUs.

2.3 Computer Vision and Interest Point De-
tection

Interest Point Detection (IPD) in digital imagery is a clas-
sic Computer Vision task. Over the past decade, a num-
ber of novel IPD algorithms and methods have been devel-
oped [4, 26]. Some of the target applications that use IPD
include point matching to enable panoramic stitching and
face identification/matching for a range of security applica-
tions [5, 17]. For many of the algorithms in IPD, paralleliza-
tion can play an important role, especially as the number of
images to be analyzed and the image resolution increases
rapidly. Parallelization can be applied to real-time applica-
tions such as video stabilization, where a parallel implemen-
tation is needed in order to meet the real-time frame rate
deadline.

The Computer Vision community has embraced hetero-
geneous computing because of the large number of appli-
cations in the field that can potentially benefit from paral-
lelization [8]. For example, SURF is one Computer Vision
application that possesses significant opportunities for par-
allelization, and a number of developers have already pro-
duced parallel implementations [28, 27, 12]. As a demon-
stration of the value of our new profiling infrastructure for
OpenCL, we have taken a CUDA implemention of SURF [9],
migrated it to OpenCL and added additional OpenCL ker-
nels to the library. We call our new framework Parallel
SURF.

3. PARALLEL SURF

The SURF application was first described by Bay et al.
in 2006 [4]. SURF analyzes an image and produces feature
vectors for points of interest (“ipoints”). SURF features have
been used to perform operations like object recognition [17],
feature comparison [27],face recognition [10]. A feature vec-
tor describes a set of ipoints. An ipoint consists of:

• The location of the point in the image.

• The local orientation at the detected point.

• The scale at which the interest point was detected.

• A descriptor vector(typically 64 values), that can be
used to compare with the descriptors of other features.

The application is summarized in Figure 1 and we refer the
interested reader to [4, 11] for a detailed discussion. Nu-
merous projects are available on the Internet that have im-
plemented elements of SURF in parallel using OpenMP [24]
and CUDA [28, 27, 12]. The primary kernels in SURF are
summarized in Table 1. We present the first (to our knowl-
edge) parallelized implementation of SURF in OpenCL.

To find points of interest, SURF applies a Fast-Hessian
Detector that uses approximated Gaussian Filters at differ-
ent scales to generate a stack of Hessian matrices. SURF

Figure 1: The Surf Algorithm performs convolution using Gaussian filters at different scales to build a stack of images. The
stack of images are used to calculate the location of an ipoint. 64 element descriptors are calculated for each ipoint. Kernels
within each block are presented in Table 1.

utilizes an integral image [15], which allows us to scale the
filter instead of the image. The location of the ipoint is cal-
culated by finding the local maxima or minima in the image
at different scales using the generated Hessian matrices.

The local orientation at an ipoint allows us to maintain in-
variance to image rotation. The local orientation (4th stage
of the pipeline in Figure 1) is calculated using the wavelet
response in the X and Y directions in the neighborhood of
the detected ipoint. The dominant local orientation is se-
lected by rotating a circle segment covering an angle of π/3
around the origin. At each position, the x and y-responses
within the segment of the circle are summed and used to
form a new vector. The orientation of the longest vector be-
comes the feature orientation. The calculation of the largest
response is done using a local memory-based reduction.

The 64 element descriptor is calculated by dividing the
neighborhood of the ipoint into 16 regular subregions. Haar
wavelets are calculated in each region and each region con-
tributes 4 values to the descriptor. Thus, 16 ∗ 4 values are
used in applications based on SURF to compare descriptors.

For the implementation evaluated in this paper, we started
from the OpenSURF library [11, 9], rewrote it in OpenCL
and added additional OpenCL kernels. Our goal was to ex-
tract as much parallelism out of the framework as possible.
In SURF, execution performance is determined by the char-
acteristics of the data set rather than the size of the data.
This is because the number of ipoints detected in the non-
max suppression stage of the algorithm helps to determine
the workgroup dimensions for the orientation and descrip-
tor kernels. Computer Vision frameworks like SURF also
have a large number of tunable parameters (e.g., a detec-
tion threshold, which changes the number of points detected
in the suppression stage) which greatly impacts the perfor-
mance of an application.

4. APPLICATION ANALYSIS METHOD-
OLOGY

A profiling framework was built to carefully characterize
the performance of our implementation of SURF when em-
bedded in other Computer Vision applications. Our profil-

ing infrastructure and approach are applicable to any many-
kernel parallel application written in OpenCL. We break
down execution based of OpenCL events. In this section,
we provide an overview on OpenCL events and then describe
our framework for recording events in a heterogeneous ap-
plication.

4.1 OpenCL Events
To provide for coarse-grained synchronization, OpenCL

provides barriers like clFlush() and clFinish(). To en-
force finer-grained synchronization, the OpenCL specifica-
tion provides an object known as an event which is used to
determine the status of a command. Event objects identify
unique commands in a queue and thus provide command-
level control. Wait lists are arrays of which events that
can be passed to OpenCL commands. Wait lists can be
used to block on more than one command. Events and wait
lists can also be used to enforce synchronization by check-
ing command status in a multi-device usage model where
the command queues may be capable of out-of-order execu-
tion, allowing devices to start executing commands as soon
as possible.

The OpenCL standard includes a profiling function
clGetEventProfilingInfo(), which returns timing statis-
tics regarding OpenCL commands in a queue. We utilize
this function heavily in our profiling framework for SURF
developed in OpenCL. OpenCL events return time-stamps1

and are associated with the following states of a command.

• CL QUEUED: Command enqueued, waiting to be
submitted

• CL SUBMITTED: Command submitted to device

• CL START: Command started executing on device

• CL END: Command has finished execution

Timestamps can be used for execution time profiling, and
combined with event wait lists, can allow us to better un-

1The OpenCL 1.1 specification provides time-stamps in
nanoseconds for all conformant devices

Kernel Name Kernel Function
Integral Row Integral image across all rows
Integral Col Integral image across all columns
Init-Det Initialize Memory Allocated for stack of Images
Build-Det Builds a stack of images after convolution of different scales
Nonmax Suppression Calculate ipoint locations and scale by looking for outliers through image stack
GetOrientation Calculate orientation with largest Haar response around ipoint
Surf 64 Calculate descriptor vector for image
Norm 64 Normalize the calculated descriptors for each ipoint

Table 1: List of the kernels implemented in OpenCL as part of SURF.

derstand the actual execution of commands through a com-
mand queue. OpenCL 1.1 [19] provides more functional-
ity for events which can increase the utility of our work.
OpenCL 1.1 also provides user events which have a similar
interface to cl event types, but that can be triggered by the
user. The new specification also provides event callbacks
that can be used to enqueue new commands.

4.2 Measurement Framework
Data values can have a dramatic impact on the perfor-

mance of applications developed with SURF (as discussed
in Section 5.3.2). SURF is presently used in a large range
of settings. These factors have helped motivate our work on
a whole-application profiling framework that assists us with
tuning SURF, as well as any other OpenCL application. We
would like to provide for online, continuous profiling, but the
overhead associated with continuous measurements presents
challenges [3, 13]. To profile an OpenCL application, a user
would need to create events explicitly and match the oc-
curence of each event with its location in the application
using metadata. Run-time profiling frameworks are com-
monly vendor specific, require running applications multiple
times [2, 20] and tend to only support legacy parallel com-
puting environments [13].

Faced with the asynchronous execution nature of OpenCL
commands, to safely gather profiling information we would
need to introduce an explicit clFinish() command. Insert-
ing clFlush() or clFinish() to query an OpenCL event
(especially on the critical path of a program) would change
the behavior of the application. The query would break the
proper sequence of OpenCL commands executed by the un-
derlying driver/runtime.

To avoid this problem, we have implemented an event
handling framework, as shown in Figure 2. When the SURF
application is launched, a unique index for each OpenCL
command is passed to our framework. If the index has not
been seen by the event request system, an event is allocated
within our vector. Using this index, a pointer to a cl event is
returned to the enqueue function. The cl event is populated
by the OpenCL runtime.

After execution completes on the current SURF frame, the
events can be queried. The management framework allows
us to control the number of events allocated (our frame-
work does not allocate more than one event per OpenCL
command). This minimizes memory overhead because al-
gorithms like SURF are typically run on large numbers of
video / camera frames, and allocating new events for each
frame is infeasible. We thus manage to record events with-
out interrupting the SURF pipeline.

5. PERFORMANCE ANALYSIS
As discussed in Section 3, it is challenging to predict per-

formance of an algorithm like SURF without knowing both
the properties of the input data set and input parameters
to the application (e.g., suppression threshold2 and depth of
the Hessian stack3). Computer Vision benchmarks [26] are
useful if our goal is to tune individual kernels, but one of our
future goals is to build a performance analysis framework
generic enough to be used with other heterogeneous appli-
cations, so we pursue a different approach. To study perfor-
mance, we use sample videos [7] to study the performance
of SURF using our event handling framework. We test our
framework on three state-of-the-art devices, as shown in Ta-
ble 2.

5.1 Implementation Details
The aim of our work is to discuss performance of a data

driven application like SURF and how a profiling framework
can help develop insight into its characteristics at runtime.
We do not aim to cover platform specific optimizations for
the kernels in the SURF algorithm. Our goal while im-
plementing the kernels of SURF was that our application
should run correctly and efficiently on any platform without
any changes.

The main kernels in SURF have been discussed in Sec-
tion 3. We apply well-known GPU programming optimiza-
tions [9, 15, 22, 25], such as local memory utilization, and
work group optimization. Such optimizations benefit both
AMD and NVIDIA GPUs.

5.2 Profiling Overhead
As mentioned in Section 4.2, our traces are gathered on-

line and saved as the application runs. We query the events
after a frame is fully completed4. We avoid adding synchro-
nization to the application. We allocate events only on the
first pass through the SURF pipeline (see Figure 1).

We measure the overhead for the extra OpenCL events by
running SURF on different devices with and without pro-
filing. To disable profiling, event pointers returned to the
clEnqueue commands are set to NULL and profiling is dis-
abled for the command queue. End-to-end performance of
SURF algorithm is measured per frame, using host based
measurements. Figure 3 shows the average time per frame
2Dictates the number of detected features.
3Determines the number of convolutions and their shape in
BuildDet.
4The granularity of querying events is left tunable to enable
applications where per frame profiling may not be necessary.

Figure 2: The OpenCL event profiling framework. The event stub is used to assign an event from within a array of event
objects to each runtime function invoked. The event management system records the profiler data received from the OpenCL
runtime.

Platform Device Type Features Memory(GB) Core Frequency (GHz)
AMD Phenom II x6 CPU 6 cores 4 3.79

AMD 5870 GPU 1600 SPUs 1 0.850
NVIDIA GTX480 (Fermi) GPU 480 CUDA Cores 3 1.4

Table 2: The devices tested with OpenCl OpenSURF.

Figure 3: Per frame execution times for different data-sets,
with profiling enabled and disabled.

for each data set. As we can see, there is only a minimal
change in performance when the profiling is enabled on AMD
and NVIDIA GPUs.

Movie Name Size
Woz 320 x 240
Voronoi 300 x 300
Vortices 687 x 611
RBC 791 x 704
UTRC 791 x 704

Table 3: Details of video samples used [7] for analysis.

Figure 4: Kernel execution duration for different GPU de-
vices. BuildDet has smaller execution time per kernel, but
is typically called an order of magnitude more times than
other kernels.

5.3 Profiling Usage
The benefits of continuously profiling an application have

been discussed previously [3, 13]. We briefly describe how
the performance of SURF can be better understood using a
profiling framework.

5.3.1 Guiding Optimization Steps
In any profile-guided optimization work, and especially

when working with heterogeneous computing systems, one
or a few kernels or functions typical dominate performance.
It is pretty obvious that we should optimize these kernels
first. In previous studies [15, 25, 22], conventional timing
profiles have been used to guide a user as to which kernel
should be optimized.

However, applications like SURF have many kernels with
comparable execution times. This may also occur when a
subset of kernels are called multiple times. This complicates
the decision of where optimization efforts should be invested.
A runtime profile of different kernels in SURF are shown in
Figure 4. The BuildDet kernel is called once to build each
image in intermediate output stack (Figure 1). The stack
consists of at least 12 images [9, 11]. Surf64 is only called
once per frame. As shown in Figure 5, the cumulative time
spent in BuildDet is similar in duration to the time spent
by Surf64. Thus, optimizing the simpler BuildDet kernel,
and reducing the number of calls to BuildDet may be as
beneficial as working on optimizing the more complicated
Surf64 kernel.

In our implementation, the number of ipoints detected is
read back to determine the workgroup dimensions for the
subsequent steps. An easy optimization (as suggested in
the NVIDIA programming guide [1]) would be to remove
this I/O by hardwiring dimensions of later workgroups using
approximate upper bounds. However, by looking at the flow
of events in Figure 5b, we see that the transfer overhead of
a single value is insignificant and the kernels executed later
in the pipeline (i.e., orientation and Surf64) are the longest
running kernels in our algorithm. So we decided that it was
not advisable to increase their work group size further.

5.3.2 Data Dependant Application Performance
While profiling SURF execution, we record events on a

per frame basis. The time per frame varies substantially,
as seen from the timing values shown in Figure 6. This is
due to the asynchronous nature of execution and variations
in computation generated by the varying number of ipoints
across frames(shown on secondary axes in Figure 6). By av-
eraging results from GPU events across multiple frames into
timelines (as shown in Figure 5), we can build a consistent
and reproducible performance profile for a dataset.

Applications like feature matching use SURF as one of the
primary computation kernels. By observing the number of
features, input parameters and a performance profile for a
data set, we can then use this information to improve perfor-
mance of such computer vision applications. This can help
guide optimizations of specific kernels based on the dataset
and the target device. The tight coupling between the pro-
gramming standard and the profiling framework permits us
to use results from profiling to improve application perfor-
mance.

5.3.3 Command Queue Behavior
Figure 7 shows the usage of the command queue for the

application. As we can see, when using either AMD or
NVIDIA GPUs, the wait time of commands increases, as
shown in Figure 7. We have plenty of kernels in our present
implementation that can exploit the parallel acceleration
provided by GPUs. We see similar characteristics in Fig-
ure 5b, where all the kernels are submitted by the CPU
within 1 millisecond of the start, after which the CPU is
idle till the orientation kernels are enqueued.

Figure 5b shows that we have pipelined the entire algo-
rithm to the GPU. However, to further improve system effi-
ciency, we would want to enqueue I/O while computation is
in progress. From Figure 7, the best time to enqueue data
(e.g., the next frame to extract features from) would be ei-
ther at the beginning or before the start of the orientation

(a) AMD 5870 Timeline. The AMD GPU is run with
synchronization for comparison purposes. Time/frame
for the pipeline without synchronization is in Figure 3.

(b) Nvidia GTX480 Timeline.

(c) AMD multicore CPU Timeline. Note that time is
in milliseconds

Figure 5: Execution timeline of SURF kernels for different
devices for the rbc video.

kernels. This should not distract the CPU from enqueueing
computations, while allowing for a maximum overlap.

6. CONCLUSIONS AND FUTUREWORK
In this paper we have demonstrated the value of utilizing

(a) Timing variation per frame- Nvidia (b) Timing variation per frame - AMD
GPUs

Figure 6: Variation of execution time per frame.

Figure 7: Breakdown of time spent by the OpenCL kernels
spent in different states in the command queue using the
Nvidia GPU.

application profiling in a parallel programming environment.
Given the complexity of current and future heterogeneous
computing environments, we need tools that can help to
identify performance bottlenecks and identify opportunities
for whole-application optimization.

Our future work includes testing our implementation of
SURF with Computer Vision applications such as facial de-
tection and searching. We also plan to test our profiling
framework with other heterogeneous applications including
multi-physics simulators and biomedical imaging. We antic-
ipate the availability of more detailed profiling information
in future versions of the OpenCL specification will greatly
aid in our ability to reap maximal performance on these
platforms.

Heterogeneous systems will continue to evolve; examples
include using multiple GPUs on a system to run general
purpose code, and AMD’s Fusion technology, which will in-
tegrate a CPU and a GPU into one package. Opportunities
exist for further acceleration of algorithms such as SURF; in
the case of multiple GPUs on a system, it would be benefi-
cial to pipeline the SURF kernels to maximize interest point
detection throughput. Profiling on such a system could be
accomplished with only minor extensions to the techniques
described in this paper.

7. ACKNOWLEDGMENTS
The authors would like to thank Timothy Smith and

Budirijanto Purnomo for their help in understanding the
SURF algorithm and GPU profiling tools. The work pre-
sented in this paper was supported in part by the NSF
through an EEC Innovation Award (EEC-0946463), by
AMD through the AMD Strategic Academic Partners Pro-
gram and by support of the Vice Provost’s Office of Research
at Northeastern University.

References
[1] CUDA programming Guide, version 2.0. NVIDIA Cor-

poration.
[2] Cuda Visual Profiler. NVIDIA Corporation.
[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat,

M. R. Henzinger, S.-T. A. Leung, R. L. Sites, M. T.
Vandevoorde, C. A. Waldspurger, and W. E. Weihl.
Continuous profiling: where have all the cycles gone?
ACM Trans. Comput. Syst., 15:357–390, November
1997.

[4] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded
up robust features. Computer Vision–ECCV 2006,
2006.

[5] M. Brown and D. Lowe. Automatic panoramic image
stitching using invariant features. International Journal
of Computer Vision, 74(1):59–73, 2007.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: stream
computing on graphics hardware. In ACM SIGGRAPH
2004 Papers, page 786. ACM, 2004.

[7] J. Burkardt. Example avi files. World Wide Web.
[8] T. Chen, D. Budnikov, C. Hughes, and Y.-K. Chen.

Computer vision on multi-core processors: Articulated
body tracking. In Multimedia and Expo, 2007 IEEE In-
ternational Conference on, pages 1862 –1865, 2-5 2007.

[9] M. Cowgill. Opensurf gpu enhancement. World Wide
Web, 2009.

[10] G. Du, F. Su, and A. Cai. Face recognition using SURF
features. In Proc. of SPIE Vol, volume 7496, pages
749628–1, 2009.

[11] C. Evans. Notes on the opensurf library. University of
Bristol, Tech. Rep. CSTR-09-001, January, 2009.

[12] P. Furgale, C. Tong, and G. Kenway. ECE1724 Project
Speeded-Up Speeded-Up Robust Features. 2009.

[13] K. Furlinger and S. Moore. Continuous runtime profil-
ing of OpenMP applications. In Proceedings of the In-
ternational Conference on Parallel Computing (ParCo
07)(Advances in Parallel Computing, volume 15.

[14] D. Gerstmann. Opencl event model usage. SIGGRAPH
ASIA 2009.

[15] M. Harris, S. Sengupta, and J. Owens. Parallel prefix
sum (scan) with CUDA. GPU Gems, 3(39):851–876,
2007.

[16] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin,
and N. Navarro. Predictive runtime code scheduling for
heterogeneous architectures. In Proceedings of the 4th
International Conference on High Performance Embed-
ded Architectures and Compilers, HiPEAC ’09, pages
19–33, Berlin, Heidelberg, 2009. Springer-Verlag.

[17] J. Luo, Y. Ma, E. Takikawa, S. Lao, M. Kawade, and
B. Lu. Person-specific SIFT features for face recogni-
tion. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 2007. ICASSP, volume 2,
2007.

[18] A. D. Malony, S. Biersdorff, W. Spear, and
S. Mayanglambam. An experimental approach to per-
formance measurement of heterogeneous parallel appli-
cations using cuda. In ICS ’10: Proceedings of the
24th ACM International Conference on Supercomput-
ing, pages 127–136, New York, NY, USA, 2010. ACM.

[19] A. Munshi. The OpenCL specification version 1.1.
Khronos OpenCL Working Group, 2010.

[20] B. Purnomo, N. Rubin, and M. Houston. ATI Stream
Profiler: a tool to optimize an OpenCL kernel on ATI
Radeon GPUs. In ACM SIGGRAPH Posters. ACM,
2010.

[21] G. Remedy. 2010.
[22] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,

D. B. Kirk, and W.-m. W. Hwu. Optimization princi-
ples and application performance evaluation of a mul-

tithreaded gpu using cuda. In PPoPP ’08: Proceedings
of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pages 73–82, New
York, NY, USA, 2008. ACM.

[23] K. Spafford, J. Meredith, J. Vetter, J. Chen, R. Grout,
and R. Sankaran. Accelerating S3D: A GPGPU
Case Study. In Euro-Par 2009, Parallel Processing-
Workshops. The Netherlands, August 25-28, 2009,
Workshops, page 122. Not Avail, 2010.

[24] S. Srinivasan, Z. Fang, R. Iyer, S. Zhang, M. Es-
pig, D. Newell, D. Cermak, Y. Wu, I. Kozintsev, and
H. Haussecker. Performance characterization and opti-
mization of mobile augmented reality on handheld plat-
forms. In Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC),
pages 128–137. Citeseer, 2009.

[25] B. Sukhwani and M. C. Herbordt. Gpu acceleration
of a production molecular docking code. In Proceed-
ings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units, GPGPU-2, pages 19–27,
New York, NY, USA, 2009. ACM.

[26] Venkata, S.K. and Ahn, I. and Donghwan Jeon and
Gupta, A. and Louie, C. and Garcia, S. and Belongie,
S. and Taylor, M.B. Sd-vbs: The san diego vision
benchmark suite. In Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on, pages
55 –64, 2009.

[27] S. Warn, W. Emeneker, J. Gauch, J. Cothren, and
A. Apon. Accelerating image feature comparisons us-
ing cuda on commodity hardware. Knoxville, TN, July
2010. Symposium on Application Accelerators in High
Performance Computing (SAAHPC).

[28] N. Zhang. Computing Optimised Parallel Speeded-
Up Robust Features (P-SURF) on Multi-Core Proces-
sors. International Journal of Parallel Programming,
38(2):138–158, 2010.

