

PROFILING AND PERFORMANCE
ANALYSIS TOOLS FOR
HETEROGENEOUS APPLICATIONS

Building tools and simulators for future devices
Perhaad Mistry, David Kaeli
Rafael Ubal, Dana Schaa,
Rodrigo Dominguez, Enqiang Sun

Northeastern University

Norman Rubin
AMD

Chris Gregg
University of Virginia

3 | Tools for Heterogeneous Applications | June 16, 2011

TOPICS

Part 1: Building Performance Analysis Tools for Heterogeneous Applications ~ 20mins
Part 2: Multi2Sim Simulation Framework - A CPU-GPU Model for Heterogeneous Computing ~ 10mins
Part 3: Other interesting work at Northeastern ~ 5mins

4 | Tools for Heterogeneous Applications | June 16, 2011

TOPICS

Part 1: Performance Analysis Tools for Heterogeneous Applications
– Motivation for profiling tools, What does OpenCL provide?
– OpenCL events and profiling usage
– Speeded Up Robust Features (SURF)
– Profiling SURF within the OpenCL interface
– Profiling applications based on SURF

Part 2: The Multi2Sim Simulation Framework - A CPU-GPU Model for Heterogeneous Computing
Part 3: Other interesting work at Northeastern

5 | Tools for Heterogeneous Applications | June 16, 2011

MOTIVATION FOR HETEROGENEOUS PROFILING TOOLS

Heterogeneous hardware running increasingly complex algorithms
– Library developer cannot predict the application where his/her library will be used

Algorithms whose performance is dependent on factors other than “data size”
– Analysis is required at runtime by the library to learn about the application

Feature Based Image Search Video Stabilization

6 | Tools for Heterogeneous Applications | June 16, 2011

OPENCL EVENTS

OpenCL provides not only cross platform applications, but also mechanisms to create tools for
parallel computing
Events are an interface to understanding OpenCL performance

– Event objects (cl_event) used to determine command status

OpenCL enqueue methods return event objects
– Provides for command level control and synchronization

Command State Description
CL_QUEUED Command is in a queue
CL_SUBMITTED Command has been submitted to device
CL_RUNNING Command is currently executing on device
CL_COMPLETE Command has finished execution

Command states as visible from OpenCL events

cl_int clEnqueueNDRangeKernel (
cl_command_queue queue,
cl_kernel kernel, cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

7 | Tools for Heterogeneous Applications | June 16, 2011

OPENCL PROFILING

Events provide rich runtime information
– Not just timestamps

Supports schedulers across multiple families
of different devices (CPUs, GPUs, APUs)
Implementation challenges

– Capturing the notion of application phase
– Minimizing profiling overhead

Present implementation builds groups of
events with user-provided identifier

cl_event cl_eventcl_event

Event Table Name Data
Results, Analysis,

Feedback

References to event objects

clGetEventinfo

cl_event
COMMAND_QUEUE

COMMAND_TYPE

EXEC_STATUS

Host-Device
IO Kernels Device-Host

IO

Profiler Region of Interest

8 | Tools for Heterogeneous Applications | June 16, 2011

SPEEDED UP ROBUST FEATURES (SURF)

Motivating example to build a OpenCL-based profiler
Summarize an image into a number of interest points

– Robust features - Simple to compute, compact in size
– Less sensitive to changes in image scale and rotation

Common applications:
– Object recognition – Face recognition
– Tracking - Navigation
– Image stitching - Building panoramas

SURF

I-point
float2 Pixel Position

float Orientation
float Scale

float Descriptor[64]

Speeded-Up Robust Features (SURF), Herbert Bay et. al.

9 | Tools for Heterogeneous Applications | June 16, 2011

SPEEDED UP ROBUST FEATURES (SURF)

Integral image: (2 kernels) 4 calls
– Scan, transpose in 2 dimensions
Hessian: (2 Kernels) 8 calls
– Groups of convolutions
Non max suppression: (1 kernel) 5 calls
– Maxima and minima from convolution
Orientation: (2 kernels) 2 calls
– Local intensity gradients for rotation

invariance
Descriptors: (2 kernels) 2 calls
– Haar descriptors around each i-point SURF is a multi-kernel pipeline where each

stage contributes a part of each feature

10 | Tools for Heterogeneous Applications | June 16, 2011

SURF APPLICATIONS

Simple applications using SURF’s generated features
Image Search - Compare descriptors of different features using simple Euclidean distance
Video Stabilization - Compare orientation values of different features

11 | Tools for Heterogeneous Applications | June 16, 2011

WHY ARE WE TALKING ABOUT SURF ?

Improve the state of the art in performance analysis tools for interesting workloads
– We want to improve performance for complex and irregular applications and algorithms

Performance Characteristics of SURF
– Data driven performance necessitates profiling at runtime
– Input arguments threshold determine performance

Commonly used as a algorithm kernel within an application
– Applications include stabilization of a video, image searching, motion tracking, etc.
– The same algorithm is used for different applications with different input parameters

Number of convolutions

Thresholds

12 | Tools for Heterogeneous Applications | June 16, 2011

OPENCL PROFILER IN SURF APPLICATION

Approximated Filters

A
pp

lic
at

io
n

P
r

SU
R

F

P
r

vector <ipoints>

Integral
Image

Hessian
Residues

Non-Max
Suppression Orientation SURF64

Descriptors

float2 Pixel Position
float Orientation

float Scale
float Descriptor[64]

SURF Feature
Comparison

Image Search using SURF features in a nearest neighbor OpenCL kernel

cl_event cl_eventcl_event cl_eventcl_event

oc
l-p

ro
fil

er

OpenCL ProfilerProfiler Results
Application Driver

13 | Tools for Heterogeneous Applications | June 16, 2011

KERNEL TIMELINE IN SURF

Application view of SURF
– Kernel pipelined over data set
– Averaged event time stamps for a

data set
Exposes optimization opportunities

– Cumulative time of small kernel
– High kernel call count
– Device – host IO duration is

insignificant in pipeline
Used to estimate host idle time once
kernels are enqueued

Similar traces on any OpenCL compliant device ☺

Kernel Wait Time
Kernel Execution Time

14 | Tools for Heterogeneous Applications | June 16, 2011

INDIVIDUAL KERNEL PERFORMANCE

Optimization steps for kernels
– Timing of each kernel across frames

Events show a consistent view across
devices
Individual timings are not representative

– Createdescriptors is longest kernel
– However BuildHessian is called more
– Hard to find without profiling

Reducing the number of kernel calls may
be as beneficial as applying platform
specific optimization
Profiling allows us to pursue feedback-
driven optimization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TI
m

e
(m

s)

Kernel Name

Individual Kernel Execution Duration

AMD GPU

Nvidia GPU

15 | Tools for Heterogeneous Applications | June 16, 2011

SURF PERFORMANCE FOR DIFFERENT APPLICATIONS

Different applications on top of SURF
– Stabilization
– Image Search
Search Application:
– Create-Descriptor is the bottleneck
– Split kernel on multiple devices
Stabilization Application:
– Build-Hessian is the bottleneck
– Reduce the number of kernel calls

0

5

10

15

20

25

30

35

40

%
 ti

m
e

of
 to

ta
l

ex
ec

ut
io

n

Kernel Name

Percentage time of each kernel of SURF (AMD 5870)

Search-Appn

Stabilizn-Appn

16 | Tools for Heterogeneous Applications | June 16, 2011

SURF PERFORMANCE FOR DIFFERENT DATA SETS

Performance variation for videos of similar
frame size

– Use case for runtime performance analysis
Same input parameters

– Running a simple feature extraction
– Variation due to differing feature count
– Cannot predict the feature count

Profiling enables performance analysis on a
per data set basis

– More than just “average time per frame”

0

100

200

300

400

500

600

700

800

900

1000

0

5

10

15

20

25

30

35

40

45

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

N
o.

 o
f I

po
in

ts

Ti
m

e
/

fr
am

e
(m

s)
Frame no

Performance Variation for different videos

RBC Vortices
No of ipt - RBC No of ipt - Vortices

17 | Tools for Heterogeneous Applications | June 16, 2011

PROFILER OVERHEAD

Baseline: profiling disabled in command queue
– Overhead for different videos
Simple techniques to minimize overhead
– Grow event list once and reuse data

structures
Query events after frame
– Allows for variable granularity of

performance measurement
We show the worst case overhead for SURF
– Profiling all kernels for every frame

17

Consistent overhead seen - per platform

0

500

1000

1500

2000

2500

3000

0

5

10

15

20

25

30

35

40

45

'Woz' 'RBC' 'Vortices' 'UtrcRoom'

Ti
m

e
(m

s)

TI
m

e
(m

s)

Video Data Set

Profiling Overhead / frame for Different Data Sets

NV wo prof NV with prof
AMD GPU wo prof AMD GPU w prof
CPU wo prof (Sec Axis) CPU w prof (Sec Axis)

18 | Tools for Heterogeneous Applications | June 16, 2011

SUMMARY

This work was motivated by an interesting case of data dependent parallelism performance

SURF currently runs on CPUs, GPUs and APUs

– Profiling plays an increasingly important role in heterogeneous environments

The OpenCL specification provides a useful interface to understand application performance

– Similar information provided for different devices

Compliments existing such as the APP Profiler and Nvidia OpenCL Profiler

– A common solution for multiple devices and vendors

– Enables static and dynamic profiling and feedback optimization

THE MULTI2SIM SIMULATION
FRAMEWORK

A CPU-GPU Model for Heterogeneous Computing
Rafael Ubal, Perhaad Mistry,
Dana Schaa, Rodrigo Dominguez
David Kaeli
Northeastern University

Norman Rubin
AMD

www.multi2sim.org

http://www.multi2sim.org

20 | Tools for Heterogeneous Applications | June 16, 2011

TOPICS

Part 1: Building Performance Analysis Tools for Heterogeneous Applications
Part 2: The Multi2Sim Simulation Framework - A CPU-GPU Model for Heterogeneous Computing

– Simulation needs for heterogeneous architectures
– Introduction to Multi2Sim
– The OpenCL callstack
– OpenCL functional simulation of the Evergreen ISA
– Usage scenarios for functional simulation

Instruction Mix

VLIW Packing

– Status and future work
Part 3: Other interesting work at Northeastern ~ 5mins

21 | Tools for Heterogeneous Applications | June 16, 2011

CURRENT ARCHITECTURAL SIMULATION METHODOLOGY

Current simulation needs for performance analysis
– Heterogeneous environments with CPU-GPU based systems
– Tool for evaluation of new architectural proposals
– Ability to model unique memory subsystems
– Simulation of a GPU ISA

Existing GPU simulation approaches
– Barra: NVIDIA Tesla ISA
– GPGPU-Sim: PTX architectural simulator
– Ocelot: PTX emulator and optimizations
– No publicly available architectural simulation or emulation of AMD ISAs
– None of the above presently support heterogeneous simulation

22 | Tools for Heterogeneous Applications | June 16, 2011

MULTI2SIM

History
– Multi2Sim 1.x (MIPS) – Superscalar pipeline and multithreading
– Multi2Sim 2.x (x86) – Multicore simulation with configurable memory hierarchy and interconnects
– New Multi2Sim 3.x.x version series – Towards simulating heterogeneous computing

Two different levels of accuracy
– Functional simulation (or emulation): m2s-fast
– Detailed (or timing) simulation: m2s

An Application Only Simulator

$./test-args hola que tal
arg[0] = 'hola'
arg[1] = 'que'
arg[2] = 'tal'

$./m2s-fast test-args hola que tal
<... Simulator output ...>
arg[0] = 'hola'
arg[1] = 'que'
arg[2] = 'tal'

<... Simulator statistics ...>

23 | Tools for Heterogeneous Applications | June 16, 2011

SIMULATING A GPU - THE OPENCL CALLSTACK

OpenCL Program (Host part)

Multi2Sim OpenCL
(libOpenCL.so)

OpenCL objects management +
GPU emulator

OpenCL function call
clEnqueueNDRangeKernel

E
m

ul
at

ed
pr

og
ra

m
M

ul
ti2

S
im

Special Call Code
(code 325)

Compute Abstraction Layer (CAL)
User level software

OpenCL Program (Host part)

AMD OpenCL Library
(libOpenCL.so)

Compute Abstraction Layer (CAL)
OS Level Interface, GPU drivers

Ex
ec

ut
ed

pr
og

ra
m

O
pe

ra
tin

g
S

ys
te

m

AMD Implementation Multi2Sim

24 | Tools for Heterogeneous Applications | June 16, 2011

SIMULATING A GPU - KERNEL STATE

a) OpenCL Binary Image Format (BIF)
b) Extract Evergreen machine code
c) Initialize device, constant memory
d) Set kernel arguments

a) Initialize local memory
b) NDRange size.
c) Work-group size

a) Initialize registers
b) Work-item global coordinates
c) Work-item local coordinates

Functional View: Global and constant memories (per ND range). Local
memory (per work-group). Registers (per work-item).

Grid

Workgroup Workgroup

Work
item

Work
item

Work
item

Wor
k

item

Global Memory

Constant Memory

Local Memory
(per Workgroup)

Register File
(per Work-item)

1) Global Operations 2) Per work group Operations 3) Per work item Operations

25 | Tools for Heterogeneous Applications | June 16, 2011

SIMULATING THE EVERGREEN VLIW-BASED ISA

Evergreen program – Clause based format
– Control flow (CF) clause
– Arithmetic-logic (ALU) clause
– Fetch-through-texture-Cache (TEX) clause

Kernels handled as precompiled binaries
– Precompiled kernel required
– M2S cannot compile from source since

simulator would be need to implement OpenCL
compiler

Compiler driver utility written as part of Multi2Sim
tool chain to generate ISA trace

00 ALU_PUSH_BEFORE: ADDR(32) CNT(47) KCACHE0(CB0:0-15)

0 x: MOV R8.x, 0.0f
y: MOV R8.y, 0.0f
z: ASHR ____, KC1[3].x, (0x0000001F).x
t: RCP_UINT__EG T0.w, KC0[1].x

1 x: LSHL R2.x, KC0[1].x, (0x00000005).x
y: LSHR T0.y, PV0.z, (0x0000001E).y
z: MOV R8.z, 0.0f
w: MOV R8.w, 0.0f
t: MULLO_UINT T0.z, KC0[1].x, PS0

2 x: PREDNE_INT ____, R14.x, 0.0f

01 JUMP ADDR(20)

02 ALU: ADDR(79) CNT(43) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

3 x: LSHL R15.x, R9.x, (0x00000005).x
y: LSHL T0.y, R0.y, (0x00000002).y
w: LSHL T0.w, KC0[1].x, (0x00000004).z
t: AND_INT R16.x, R1.x, (0xFFFFFFFC).w

26 | Tools for Heterogeneous Applications | June 16, 2011

SIMULATING THE EVERGREEN ISA

00 ALU_PUSH_BEFORE: ADDR(32) CNT(10) KCACHE0(CB0:0-15)

0 x: MOV R8.x, 0.0f
y: MOV R8.y, 0.0f
z: ASHR ____, KC1[3].x, (0x0000001F).x
t: RCP_UINT__EG T0.w, KC0[1].x

1 x: LSHL R2.x, KC0[1].x, (0x00000005).x
y: LSHR T0.y, PV0.z, (0x0000001E).y
z: MOV R8.z, 0.0f
w: MOV R8.w, 0.0f
t: MULLO_UINT T0.z, KC0[1].x, PS0

2 x: PREDNE_INT ____, R14.x, 0.0f

01 JUMP ADDR(20)

02 ALU: ADDR(79) CNT(43) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

3 x: LSHL R15.x, R9.x, (0x00000005).x
y: LSHL T0.y, R0.y, (0x00000002).y
w: LSHL T0.w, KC0[1].x, (0x00000004).z
t: AND_INT R16.x, R1.x, (0xFFFFFFFC).w

Read & Disassemble
CF Clause

Instr is
CF

Emulate
(active threads)

Read & Disassemble
Instruction

Emulate
(update mask)

End
clause

TOP

Y

Start ALU / Tex
Clause

Y

N

N

27 | Tools for Heterogeneous Applications | June 16, 2011

GPU EMULATION USAGE SCENARIOS

Workload Characterization – Instruction Mix
Instruction mix is not always a static analysis

– A benchmark run with representative data
Comparing the percentage of ALU, texture and control-flow clauses

– Similar to Kernel Analyzer and APP profiler
Statistics gathered by Multi2Sim and validated against AMD APP SDK Examples

Percentage of ALU Clauses, CF Clauses and Texture clauses for examples in AMD APP SDK

28 | Tools for Heterogeneous Applications | June 16, 2011

GPU EMULATION USAGE SCENARIOS

Workload Characterization – VLIW Packing
Stream core of AMD GPU is a VLIW (Very Large
Instruction Word) architecture

– Upto 5 scalar instructions co-issued in a VLIW
packet

VLIW Packing handled by GPU shader-compiler
– Improved by optimizations that increase arithmetic

intensity (e.g. : loop unrolling, vectorization)

B
ra

nc
h

U
ni

t

General Purpose Registers

TP
E

Pr
oc

es
si

ng
E

le
m

en
ts

Instruction and Control Flow

Breakdown of VLIW packing for AMD
APP SDK examples

Stream core of AMD GPU

29 | Tools for Heterogeneous Applications | June 16, 2011

STATUS AND FUTURE WORK

Present Status
– Validated against execution of the AMD APP SDK

Ongoing Work
– Architectural Simulation and exploration
– Pipeline stages, Functional units and thread management
– Full GPU memory subsystem
– Pipeline visualization tool for heterogeneous architectures

A complete heterogeneous simulation model by integration with the multicore model
– First heterogeneous (x86 + Evergreen) architectural simulator for Fusion-like platforms

M2S MAILING LIST
Low traffic mailing list - Subscribe for updates

http://www.multi2sim.org/mailing

PACT tutorial (Friday October 14, 2011)
The Multi2Sim Simulation Framework.
A CPU-GPU Model for Heterogeneous Computing

http://www.multi2sim.org/mailing

31 | Tools for Heterogeneous Applications | June 16, 2011

OTHER INTERESTING WORK IN NORTHEASTERN UNIVERSITY

Caracal
– An open-source dynamic translator that can be

used by compiler researchers
– Allows CUDA C programs to run on AMD

GPUs

Motivation
– Study intermediate representations
– Study implications of translating architecture-

dependent code

Relevant URL
http://code.google.com/p/gpuocelot

Caracal

CUDA C
(PTX)

CUDA
Runtime

Driver (binary)

Nvidia
GPU

OpenCL
IL

CAL
Runtime

Driver (binary)

AMD
GPU

http://code.google.com/p/gpuocelot

32 | Tools for Heterogeneous Applications | June 16, 2011

EXPERIENCES WITH MIGRATING APPLICATIONS TO A GPU

3-D Cardiac CT Imaging
– Iterative Least Squares Back Projection

3-D Breast Cancer Screening
– Maximum Likelihood Estimation

Intrusion Detection Systems
– K-Nearest Neighbor Outlier Detection

Physics-based Simulation for Surgical simulation
– Data structures useful for physics simulation

Ultrasound image processing pipeline

NUIC
Technologies

33 | Tools for Heterogeneous Applications | June 16, 2011

BIOMEDICAL IMAGE RECONSTRUCTION

Developing a suite of Biomedical Image Reconstruction Libraries
– Implementations that can be tailored to different problems

Target applications:
– Deformable registration - radiation oncology
– 3-D Iterative reconstruction – cardio-vascular imaging
– Maximum likelihood estimation – Digital Breast Tomosynthesis
– Motion compensation in PET/CT images - cardiovascular imaging
– Hyperspectral imaging – skin cancer screening
– Image segmentation – brain imaging

$1.3M NSF Award EEC-0946463

34 | Tools for Heterogeneous Applications | June 16, 2011

HOMEWORK FOR THE TRIP HOME ☺

SURF code download
– http://code.google.com/p/clsurf

Multi2Sim Download
– www.multi2sim.org

GPUOcelot
– http://code.google.com/p/gpuocelot/

Relevant Papers
– P. Mistry, C. Gregg, N. Rubin, D. Kaeli, K. Hazelwood. Analyzing program flow within a many-kernel OpenCL

application, In Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Processing Units,
GPGPU-4

– R. Dominguez, D. Schaa, and D. Kaeli. Caracal: Dynamic Translation of Runtime Environments for GPUs. In
Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Processing Units, GPGPU-4

For more information about GPU research in NUCAR
– www.ece.neu.edu/groups/nucar/GPU/

http://code.google.com/p/clsurf
http://www.multi2sim.org
http://code.google.com/p/gpuocelot/
http://www.ece.neu.edu/groups/nucar/GPU/

THANK YOU !
QUESTIONS OR COMMENTS ?
Perhaad Mistry
pmistry@ece.neu.edu

Rafael Ubal (Author of M2S)
ubal@ece.neu.edu

36 | Tools for Heterogeneous Applications | June 16, 2011

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions
and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited
to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no
obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to
make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO
RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL
OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in
this presentation are for informational purposes only and may be trademarks of their respective owners.

The contents of this presentation were provided by individual(s) and/or company listed on the title page. The information and
opinions presented in this presentation may not represent AMD’s positions, strategies or opinions. Unless explicitly stated, AMD is
not responsible for the content herein and no endorsements are implied.

